Капитализация процентов
Хорошей иллюстрацией является «лепта вдовицы» из евангельского рассказа о бедной вдове, на которую обратил внимание учеников Иисус Христос: она оставила в качестве пожертвования на иерусалимский храм последнее, что у неё было, — две самых мелких монеты, лепты. Если представить себе, что некий банк существует с того времени по сей день, всё это время обеспечивая капитализацию процентов по вкладам в сумме, скажем, пять процентов годовых, и лепта этой вдовы была внесена на счёт в этом банке, то какая сумма накопилась бы на этом счёте к сегодняшнему дню?
Последующие расчёты как раз и иллюстрируют применение сложных процентов. Для наглядности будем говорить не о лепте, а о копейке. Если ставка составляет 5 % годовых, то после первого года хранения капитал составил бы копейку плюс 5 % от неё, то есть возрос бы в (1 + 0,05) раза. На второй год 5 % рассчитывались бы уже не от одной копейки, а от величины, большей её в (1 + 0,05) раза. И, в свою очередь, данная величина увеличилась бы тоже за год в (1 + 0,05) раза. Значит, по сравнению с первичной суммой вклад за два года возрос бы в (1 + 0,05)^2 раз. За три года — в (1 + 0,05)^3 раз.
К 2022 году первичный вклад вырос бы до величины в (1 + 0,05)^2022 раз больше первоначальной. Величина (1 + 0,05)^2022 составляет 6,99•10^42. При первоначальном вкладе в одну копейку к 2021 году сумма составит 6,99•10^42
копеек, то есть около 7 тредециллионов рублей.
Первоначальная идея подобного примера принадлежит польскому математику Станиславу Ковалю и опубликована им в начале семидесятых годов в книге «500 математических загадок».